A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity

نویسندگان

  • Claire E. Walczak
  • Isabelle Vernos
  • Timothy J. Mitchison
  • Eric Karsenti
  • Rebecca Heald
چکیده

BACKGROUND In eukaryotes, assembly of the mitotic spindle requires the interaction of chromosomes with microtubules. During this process, several motor proteins that move along microtubules promote formation of a bipolar microtubule array, but the precise mechanism is unclear. In order to examine the roles of different motor proteins in building a bipolar spindle, we have used a simplified system in which spindles assemble around beads coated with plasmid DNA and incubated in extracts from Xenopus eggs. Using this system, we can study spindle assembly in the absence of paired cues, such as centrosomes and kinetochores, whose microtubule-organizing properties might mask the action of motor proteins. RESULTS We blocked the function of individual motor proteins in the Xenopus extracts using specific antibodies. Inhibition of Xenopus kinesin-like protein 1 (Xklp1) led either to the dissociation of chromatin beads from microtubule arrays, or to collapsed microtubule bundles on beads. Inhibition of Eg5 resulted in monopolar microtubule arrays emanating from chromatin beads. Addition of antibodies against dynein inhibited the focusing of microtubule ends into spindle poles in a dose-dependent manner. Inhibition of Xenopus carboxy-terminal kinesin 2 (XCTK2) affected both pole formation and spindle stability. Co-inhibition of XCTK2 and dynein dramatically increased the severity of spindle pole defects. Inhibition of Xklp2 caused only minor spindle pole defects. CONCLUSIONS Multiple microtubule-based motor activities are required for the bipolar organization of microtubules around chromatin beads, and we propose a model for the roles of the individual motor proteins in this process.

منابع مشابه

The KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK

Although the microtubule-depolymerizing KinI motor Kif2a is abundantly expressed in neuronal cells, we now show it localizes to centrosomes and spindle poles during mitosis in cultured cells. RNAi-induced knockdown of Kif2a expression inhibited cell cycle progression because cells assembled monopolar spindles. Bipolar spindle assembly was restored in cells lacking Kif2a by treatments that alter...

متن کامل

Molecular phylogeny of the kinesin family of microtubule motor proteins.

The rapidly expanding kinesin family of microtubule motor proteins includes proteins that are involved in diverse microtubule-based functions in the cell. Phylogenetic analysis of the motor regions of the kinesin proteins reveals at least five clearly defined groups that are likely to identify kinesins with different roles in basic cellular processes. Two of the groups are consistent with overa...

متن کامل

Dynein and mast/orbit/CLASP have antagonistic roles in regulating kinetochore-microtubule plus-end dynamics.

Establishment and maintenance of the mitotic spindle requires the balanced activity of microtubule-associated proteins and motors. In this study we have addressed how the microtubule plus-end tracking protein mast/orbit/CLASP and cytoplasmic dynein regulate this process in Drosophila melanogaster embryos and S2 cells. We show that mast accumulates at kinetochores early in mitosis, which is foll...

متن کامل

Interplay of Microtubule Dynamics and Sliding during Bipolar Spindle Formation in Mammalian Cells

Accurate chromosome segregation during mitosis relies on the organization of microtubules into a bipolar spindle. Kinesin-5 proteins play an evolutionarily conserved role in establishing spindle bipolarity [1, 2] and clinical trials are currently evaluating inhibitors of human kinesin-5 (i.e., Eg5) for chemotherapeutic potential. However, in mammalian somatic cells, Eg5 activity is dispensable ...

متن کامل

hTPX2 Is Required for Normal Spindle Morphology and Centrosome Integrity during Vertebrate Cell Division

Bipolar spindle formation is essential for the accurate segregation of genetic material during cell division. Although centrosomes influence the number of spindle poles during mitosis, motor and non-motor microtubule-associated proteins (MAPs) also play key roles in determining spindle morphology. TPX2 is a novel MAP also characterized in Xenopus cell-free extracts. To examine hTPX2 (human TPX2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Current Biology

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1998